

Time-resolved adaptive FEM simulation of the DLR-F11 aircraft model at high Reynolds number

Johan Hoffman¹ Johan Jansson^{1,2} Niclas Jansson¹ Rodrigo Vilela de Abreu¹

Computational Technology Laboratory, HPCViz, CSC, KTH [1] Basque Center for Applied Mathematics (BCAM) [2]

2014 AIAA Science and Technology Forum (SciTech 2014), 13-17 January, National Harbor, MD

Main ingredients of our paper

Objective

...we would like to present a new methodology for computational aerodynamics, and we would like this methodology to establish a new direction for the field.

How to achieve that? (or "Road map" to presentation)

- Show quantitatively good/excellent results.
- Present main features of the method.
- Show hard figures of computational costs.

Key results I, lift breakdown

Case 2b / config4 / Re=15.1M

Fig: C_L , C_D , vs. angle of attack.

▶ Lift breakdown observed but no significant increase in drag.

• ...

Key results I, lift breakdown

Case 2b / config4 / Re=15.1M

Fig: C_L , C_D , vs. angle of attack.

- Lift breakdown observed but no significant increase in drag.
- ▶ Refined result "approaches" measurements.

Key results II, stall prediction

Case 2b+3b / config4+config5 / Re=15.1M

Fig: C_L , C_D , vs. angle of attack.

- "config4", angle of attack $\alpha = 12^{\circ}$, 21° and 22.4°.
- "config5", angle of attack $\alpha = 24$ °.
- ▶ Lift breakdown observed AND significant increase in drag for "config5", angle of attack $\alpha = 24$ °.

Key results II, stall prediction

- Similar patterns along the wing.
- ► Stall cells growing towards the wing tip of "config5".

Key results, summary

Case 2b / config4 / Re = 15.1M

- lift breakdown...
- ...BUT no clear increase in drag! Worse match to experiments...

Case 3b / config5 / Re = 15.1M

- lift breakdown...
- ...AND clear increase in drag! Better match to experiments...

Conclusion

Need full geometry (config5) to correctly predict experimental results.

Method highlights, DFS¹

The General Galerkin method (G2)

- **FEM** with piecewise linear approximation in space and time.
- ► Fully unstructured meshes.
- ► Time-resolved method where numerical stabilization based on the residual dissipates turbulent kinetic energy.
- ► Slip velocity boundary condition with small (zero) skin friction.
- ► Adaptive mesh refinement with respect to output of interest using associated adjoint problem to estimate errors in output.

¹Direct Finite Element Simulation

In other words

- ► Unstructured meshes ~ solve problems with complex geometries.
- ► Time-resolved method ~ no turbulence modeling.
- ► Slip velocity boundary condition \sim **no boudary layer mesh**.
- ► Adjoint-based adaptive mesh refinement ~ cells put on the right place, fewer cells, cheaper.

For $\hat{U}=(U,P)$ a weak solution, $\hat{\varphi}=(\varphi,\theta)$ a solution to a linearized adjoint problem, and $M(\hat{U})=((\hat{U},\hat{\psi}))$ a mean value output, with $\hat{\psi}$ a weight function, we define the error estimate:

$$|M(\hat{u}) - M(\hat{U})| = |((\hat{u} - \hat{U}, \hat{\psi}))| \leq \sum_{K \in \mathcal{T}_n} \mathcal{E}_K,$$

with the error indicator:

$$\mathcal{E}_{K} \equiv \sum_{n=1}^{N} \left[\int_{I_{n}} |R_{1}(\hat{U})|_{K} \cdot \omega_{1} dt + \int_{I_{n}} |R_{2}(U)|_{K} \omega_{2} dt + \int_{I_{n}} |SD_{\delta}^{n}(\hat{U}; \hat{\varphi})_{K}| dt \right],$$

for each element *K* in the mesh \mathcal{T}_n , with stability weights ω_i , i = 1, 2.

For $\hat{U}=(U,P)$ a weak solution, $\hat{\varphi}=(\varphi,\theta)$ a solution to a linearized adjoint problem, and $M(\hat{U})=((\hat{U},\hat{\psi}))$ a mean value output, with $\hat{\psi}$ a weight function, we define the error estimate:

$$|M(\hat{u}) - M(\hat{U})| = |((\hat{u} - \hat{U}, \hat{\psi}))| \leq \sum_{K \in \mathcal{T}_n} \mathcal{E}_K,$$

with the error indicator:

$$\mathcal{E}_K \equiv \sum_{n=1}^N \left[\int_{I_n} \left| R_1(\hat{U}) \right|_K \cdot \omega_1 \, dt + \int_{I_n} \left| R_2(U) \right|_K \, \omega_2 \, dt + \int_{I_n} \left| SD_\delta^n(\hat{U}; \hat{\varphi})_K \right| \, dt \right],$$

for each element *K* in the mesh \mathcal{T}_n , with stability weights ω_i , i = 1, 2.

For $\hat{U}=(U,P)$ a weak solution, $\hat{\varphi}=(\varphi,\theta)$ a solution to a linearized adjoint problem, and $M(\hat{U})=((\hat{U},\hat{\psi}))$ a mean value output, with $\hat{\psi}$ a weight function, we define the error estimate:

$$|M(\hat{u}) - M(\hat{U})| = |((\hat{u} - \hat{U}, \hat{\psi}))| \leq \sum_{K \in \mathcal{T}_n} \mathcal{E}_K,$$

with the error indicator:

$$\mathcal{E}_K \equiv \sum_{n=1}^N \left[\int_{I_n} |R_1(\hat{U})|_K \cdot \omega_1 dt + \int_{I_n} |R_2(U)|_K \omega_2 dt + \int_{I_n} |SD^n_{\delta}(\hat{U}; \hat{\varphi})_K| dt \right],$$

for each element *K* in the mesh \mathcal{T}_n , with stability weights ω_i , i = 1, 2.

How do we generate the mesh?

Adaptive algorithm

- 1. For the mesh \mathcal{T}_n : compute primal and adjoint problem.
- 2. Compute error indicator for all cells
- 3. Mark 10% of the elements with highest "error indicator" for refinement.
- 4. Generate the refined mesh \mathcal{T}_{n+1} , and goto 1.

<u>Initial mesh</u> (angle of attack 12°):

3.8M cells

<u>Final mesh</u> (after 4 adaptive refinements):

22.6M cells

 \Rightarrow Compare, e.g., with committee's medium mesh, 99M cells for half airplane!

How adjoint adaptivity works

Adjoint velocity.

Momentum residual.

How adjoint adaptivity works

Adjoint velocity.

Momentum residual.

How adjoint adaptivity works

Marked cells refinement.

Adjoint velocity.

More results, convergence

Case 2b / config4 / Re=15.1M / Angle of attack 12 $^{\circ}$

More results, convergence

Case 2b / config4 / Re=15.1M / Angle of attack 21 $^{\circ}$

Computational resources

Lindgren at PDC/KTH

- ▶ 1,516 node Cray XE6.
- Dual 12-core nodes (36,384 cores).
- ▶ 32 GB DDR3 per node.
- Cray Gemini (3-D Torus topology).

Simulation time

- ▶ 200,000 core hours (adaptive algorithm for 1 angle of attack).
- \blacktriangleright 800,000 all simulations (12 °, 21 °, 22.4 ° and 24 °.).
- ▶ Roughly 1 month on 1,000 cores.

Conclusions

We were able to compute the flow around a full aircraft model at high Re...

- ...stall prediction for config5.
- ...adaptive solution approaches experimental values.
- ...without boundary layer.
- ...with a time-dependent method.
- ...with fewer cells than anybody else.
- ...with (our own) open-source software.

Next, we would like to...

...perform further simulations with config5.

Unicorn, DOLFIN @ open-source FENiCS-project

http://dryad.csc.kth.se/projects/dolfin-hpc/files http://dryad.csc.kth.se/projects/unicorn-hpc/files http://www.fenicsproject.org/

Acknowledgements

Initial mesh generated with **ANSA** by Beta CAE Systems. Financial support from

- Swedish Foundation for Strategic Research
- European Research Council
- Swedish Research Council, Swedish Energy Agency

This work was performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the Center for High-Performance Computing (PDC) at KTH and by the "Red Española de Supercomputación" and the "Barcelona Supercomputing Center - Centro Nacional de Supercomputación" (BSC).